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Abstract

Bernoulli-logistic latent Gaussian models
(bLGMs) are a useful model class, but ac-
curate parameter estimation is complicated
by the fact that the marginal likelihood con-
tains an intractable logistic-Gaussian inte-
gral. In this work, we propose the use of
fixed piecewise linear and quadratic upper
bounds to the logistic-log-partition (LLP)
function as a way of circumventing this in-
tractable integral. We describe a framework
for approximately computing minimax opti-
mal piecewise quadratic bounds, as well a
generalized expectation maximization algo-
rithm based on using piecewise bounds to
estimate bLGMs. We prove a theoretical
result relating the maximum error in the
LLP bound to the maximum error in the
marginal likelihood estimate. Finally, we
present empirical results showing that piece-
wise bounds can be significantly more ac-
curate than previously proposed variational
bounds.

1. Introduction

Latent Gaussian Models (LGMs) are an important
class of probabilistic models that includes factor anal-
ysis and probabilistic principal components analysis
for continuous data (Tipping & Bishop, 1999), as well
as binary and multinomial factor analysis for discrete
data (Wedel & Kamakura, 2001; Collins et al., 2002;
Mohamed et al., 2008; Khan et al., 2010). The gen-
erative process for such models begins by sampling a
latent vector z from the latent Gaussian distribution
N (µ,Σ). The canonical parameters of the distribu-
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tion over the visible variables y is then given by a lin-
ear function Wz+b of the latent variables z. Different
LGM models are obtained using different likelihoods
for the visible variables and different restrictions on
the model parameters.

The main difficulty with the LGM class is that the
latent variables z must be integrated away to obtain
the marginal likelihood needed for standard maximum
likelihood learning. This integration can be carried
out analytically in Gaussian-likelihood LGMs because
the model is jointly Gaussian in the latent factors
and the visible variables. Other likelihood models
lack this property, resulting in intractable integrals in
the marginal likelihood. The special case of discrete
LGMs based on a Bernoulli-logistic or multinomial-
softmax likelihood model has been well studied and
several previous estimation approaches have been pro-
posed. Collins et al. (2002) propose an approach
based on maximizing over the latent variables in-
stead of marginalizing over them in the case of expo-
nential family factor analysis (eFA). Mohamed et al.
(2008) propose sampling from the model posterior us-
ing Hamiltonian Monte Carlo, again for eFA. Jaakkola
& Jordan (1996) propose a variational approach based
on an adjustable quadratic bound to the logistic-log-
partition function. Khan et al. (2010) propose a re-
lated variational approach for multinomial factor anal-
ysis based on a bound due to Bohning (1992).

In this work, we focus on the Bernoulli-logistic LGM
class for binary data and adopt a strategy of upper
bounding the logistic-log-partition (LLP) function
llp(x) = log(1 + exp(x)). Our main contribution is
the proposal of fixed, piecewise linear and quadratic
bounds as a more accurate replacement for the varia-
tional quadratic bounds proposed by Jaakkola & Jor-
dan (1996) and Bohning (1992). Piecewise bounds
have the important property that their maximum er-
ror is bounded and can be driven to zero by increasing
the number of pieces.
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We use recent results from Hsiung et al. (2008) to com-
pute minimax optimal linear bounds and introduce
a novel optimization framework for minimax fitting
of piecewise quadratic bounds. We show that piece-
wise quadratic bounds can be ten times more accurate
than linear bounds using the same number of pieces
at little additional computational cost. We prove a
theoretical result relating the maximum error in the
logistic-log-partition bound to the maximum error in
the marginal likelihood estimate. Similar theoretical
results do not exist for variational quadratic bounds.
Finally, we apply the bounds to several Bernoulli-
logistic LGM (bLGM) models including Bernoulli-
logistic latent Gaussian graphical models (bLGGMs)
and Bernoulli-logistic factor analysis (bFA). We find
significant improvements over the previous variational
quadratic bounds.

2. Bernoulli-Logistic LGMs

In this section, we introduce a general Bernoulli-
logistic LGM that subsumes Bernoulli-logistic factor
analysis (bFA) and Bernoulli-logistic latent Gaussian
graphical models (bLGGMs). We denote the visible
data vectors by yn and the latent vectors by zn. In
general, yn and zn will have dimensions D and L re-
spectively with yn ∈ {0, 1}D and zn ∈ RL. µ and Σ
denote the mean and covariance of the latent Gaus-
sian as seen in Equation 1. The Bernoulli likelihood
is defined through the logistic function in Equation
2, which is in turn defined through the logistic-log-
partition function given in Equation 4. The mapping
between the latent space and the canonical parame-
ter space for each visible dimension d is specified by a
length-L weight vector Wd and a scalar offset bd, as in
Equation 3. Let W be the matrix with Wd as rows.
We can see that integrating over the latent variable zn,
which is necessary to compute the marginal likelihood,
introduces an intractable logistic-Gaussian integral.

p(zn|θ) = N (zn|µ,Σ) (1)

p(yn|zn,θ) =

Dd∏
d=1

exp(ydnηdn − llp(ηdn)) (2)

ηdn = Wdzn + bd (3)

llp(η) = log(1 + exp(η)) (4)

As mentioned in the introduction, different binary
models can be obtained by restricting the general
model in different ways. The prior mean µ and the off-
set b are interchangeable in all the models we consider
so we opt to use the mean only. We obtain the bFA
model by assuming that L ≤ D and Σ is the identity
matrix, while W and µ are unrestricted. Conversely,

we obtain the bLGGM by assuming that D = L and
W is the identity matrix, while µ and Σ are un-
restricted. We obtain a sparse bLGGM (sbLGGM)
model by additionally placing a Gaussian graphical
lasso prior p(Σ−1|λ) ∝ exp(−λ||Σ−1||1) on the pre-
cision matrix Σ−1. The main difference between the
three models is that when L < D, the bFA model
assumes a low-rank structure on the canonical param-
eters. The bLGGM instead assumes a graphical struc-
ture which is more appropriate when latent variables
have sparse interactions. The sbLGGM model can fur-
ther enforce sparsity in the latent graph.

3. Bounds on the LLP Function

In this section, we briefly review the existing varia-
tional upper bounds on the logistic-log-partition func-
tion (LLP) due to Jaakkola & Jordan (1996) and
Bohning (1992). We then move to the piecewise linear
and quadratic bounds that form the focus of this pa-
per. The most important feature of all of these bounds
is that their expectations with respect to a univariate
Gaussian distribution can be obtained in closed form,
providing a lower bound on the log marginal likelihood
that can be used for tractable model estimation.

3.1. The Jaakkola Bound

The variational quadratic bound introduced by
Jaakkola & Jordan (1996) can be derived through
Fenchel duality and has been quite widely used. The
bound is given by llp(x) ≤ aξx

2 + bξx + cξ where
aξ = λξ, bξ = 1/2, cξ = −λξξ2 − 1

2ξ + llp(ξ), λξ =
1
2ξ ( 1

1+e−ξ
− 1

2 ). Here ξ is a scalar variational parameter
that must be optimized to maximize the approximate
marginal likelihood.

3.2. The Bohning Bound

Bohning’s bound is a lesser known quadratic varia-
tional bound derived from a Taylor series expansion
of the LLP function. It is faster to optimize than
Jaakkola’s bound as it has fixed curvature (Bohning,
1992), but it is less accurate. The bound is given by
llp(x) ≤ x2/8+bψx+cψ, where bψ = (1+e−ψ)−1−ψ/4
and cψ = ψ2/8− (1 + e−ψ)−1ψ + llp(ψ). ψ is a scalar
variational parameter that must be optimized to max-
imize the approximate marginal likelihood.

3.3. Piecewise Linear and Quadratic Bounds

The LLP bounds proposed by Jaakkola & Jordan
(1996) and Bohning (1992) can be quite accurate lo-
cally, however, the induced bounds on the marginal
likelihood can be quite inaccurate. This is due to
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Figure 1. Figure (a) shows a comparison of three-piece linear (L3) and quadratic (Q3) upper bounds on the LLP function
(top) and the induced lower bounds on the logistic function (bottom). Figure (b) shows a comparison of the error in the
three-piece linear and quadratic bounds on the LLP function (top) and induced bounds on the logistic function (bottom).
Figure (c) shows the maximum error in the LLP bounds as a function of the number of pieces in the bound.

the fact that the marginal likelihood integrates over
the whole range of the approximation and any single-
piece quadratic function will have unbounded error rel-
ative to the LLP function. For this reason, we propose
the use of piecewise linear and quadratic LLP bounds,
which have a finite maximum error that can be driven
to zero by increasing the number of pieces.

An R-piece quadratic bound consists of R intervals
defined by R + 1 threshold points t0, ..., tR such that
tr < tr+1, and R quadratic functions arx

2 + brx+ cr.
An R-piece linear bound is a special case where ar = 0
for all r. We fix the first and last threshold points to
−∞ and ∞, respectively. For simplicity, we use α to
denote the complete set of bound parameters including
the threshold points and quadratic coefficients.

The minimax optimal R-piece quadratic upper bound
problem for the LLP function is defined in Equation
5. The objective function is simply the maximum
gap between the piecewise quadratic bound and the
LLP function. The first constraint is required to en-
sure that each quadratic function is an upper bound
over the interval it is defined on. The second constraint
ensures that the thresholds are monotonically increas-
ing. The final constraint ensures that the curvature of
each quadratic function is non-negative.

min
α

max
r∈{1,..,R}

max
tr−1≤x<tr

arx
2 + brx+ cr − llp(x) (5)

arx
2 + brx+ cr − llp(x) ≥ 0 ∀ r, x ∈ [tr−1, tr]

tr − tr−1 > 0 ∀r ∈ {1, .., R}
ar ≥ 0 ∀r ∈ {1, .., R}

We now reformulate the problem to remove all of

the constraints. The second and third constraints
can be dealt with using trivial reparameterizations.
The first constraint can be replaced with an equal-
ity, which can then be solved for cr yielding cr =
−
(
mintr−1≤x<tr arx

2 + brx− llp(x)
)
. This substitu-

tion is essentially finding the minimum gap between
the quadratic and the LLP function on each interval
and setting it to zero. This converts any quadratic
with positive curvature into an upper bound on the
LLP function over the corresponding interval. The fi-
nal unconstrained problem is given below.

min
α

max
r∈{1,..,R}

(
max

tr−1≤x<tr
arx

2 + brx− llp(x)

)
−
(

min
tr−1≤x<tr

arx
2 + brx− llp(x)

)
(6)

The main difficulty with this optimization problem
comes from the fact that the inner maximization and
minimization problems apparently have no closed-form
solutions. However, global solutions for both the
maximization and minimization problems can be eas-
ily found by numerical optimization as the function
ax2+bx−llp(x) has at most three critical points for any
choice of a and b. However, this means that the outer
minimization must be conducted using a derivative-
free optimization algorithm since the objective func-
tion itself involves solving a non-linear optimization
problem. In this work, we use the classical Nelder-
Mead method (Nelder & Mead, 1965). In the linear
case, Hsiung, Kim, and Boyd (2008) have proposed a
constructive search method for determining minimax
optimal coefficients and break points. Their work was
motivated by the need to obtain linear approximations
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L(θ) =
1

N

N∑
n=1

log

∫
p(yn|z,θ)p(z|θ)dz =

1

N

N∑
n=1

log

∫
qn(z|γn)

qn(z|γn)
p(yn|z,θ)p(z|θ)dz (7)

LJ(θ,γ) =
1

N

N∑
n=1

Eqn(z|γn)[log p(yn|z,θ)] + Eqn(z|γn)[log p(z|θ)]− Eqn(z|γ)[log qn(z|γn)] (8)

LQJ(θ,γ) =
1

N

N∑
n=1

D∑
d=1

Eqn(z|γn)
[
ydnWT

d z−Bα(WT
d z)
]
−DKL(qn(z|γn)||p(z|θ)) (9)

DKL(qn(z|γn)||p(z|θ)) =
1

2

(
log |Σ| − log |Vn|+ tr(VnΣ−1) + (mn − µ)TΣ−1(mn − µ)−D

)
(10)

to LLP constraints in the context of geometric pro-
gramming. We use their method for computing piece-
wise linear bounds in this work.

Figure 1 illustrates the gain in accuracy obtained us-
ing piecewise quadratic bounds instead of piecewise
linear bounds. Figure 1(a) and 1(b) contrast the accu-
racies obtained using three-piece linear and quadratic
bounds while figure 1(c) shows the maximum error of
both linear and quadratic bounds as a function of the
number of pieces. We see that the piecewise quadratic
bounds can be more than an order of magnitude more
accurate than the piecewise linear bounds using the
same number of pieces. Conversely, it can take more
than double the number of pieces for a piecewise linear
bound to approach the same accuracy as a piecewise
quadratic bound.

4. Learning with Piecewise Bounds

We propose a general expectation maximization (EM)
algorithm (Dempster et al., 1977) for bLGMs us-
ing piecewise quadratic bounds to overcome the in-
tractable logistic-Gaussian integral. This EM algo-
rithm subsumes both the piecewise linear case and the
single variational quadratic bound case.

4.1. Bounding the Marginal Likelihood

We begin with the intractable log marginal likeli-
hood L(θ) given in Equation 7 and introduce a vari-
ational posterior distribution qn(z|γn) for each data
case. We use a full covariance Gaussian posterior with
mean mn and covariance Vn. The full set of varia-
tional parameters is thus γn = [mn,Vn]. We apply
Jensen’s inequality to obtain an initial lower bound
LJ(θ,γ), as shown in Equation 8. The second and
third terms in LJ(θ,γ) are easily seen to be the nega-
tive of the Kullback−Leibler divergence from the vari-
ational Gaussian posterior qn(z|mn,Vn) to the Gaus-
sian prior distribution p(z|µ,Σ), which has a well-

known closed-form expression, as seen in Equation 10.
Finally, we apply a piecewise quadratic bound Bα(x)
to approximate the LLP function, obtaining the final
bound LQJ(θ,γ) given in Equation 9.

We now expand the likelihood term in LQJ(θ,γ). The
expectation of the linear term is straightforward. The
expectation of the bound requires introducing a change
of variables η = WT

d z for all d. We then have a
tractable expectation of a piecewise quadratic function
with respect to a univariate Gaussian distribution with
parameters γ̃dn = {m̃dn, ṽdn} as defined below.

Eqn(z|γn)[log p(yn|z,θ)]

≥
D∑
d=1

(
ydnWT

d mn − Eqn(z|γn)[Bα(WT
d z)]

)
=

D∑
d=1

(
ydnWT

d mn − Eqn(η|γ̃dn)[Bα(η)]
)

γ̃dn = {m̃dn, ṽdn}, m̃dn = WT
d mn, ṽdn = WT

d VnWd

Finally, we apply the definition of the piecewise
quadratic bound Bα(x) after the change of variables.
The result takes the form of a sum of truncated ex-
pectations of each piece of the quadratic bound. To
simplify the notation, we have introduced the special
function fr(µ, σ

2,α) to represent the expectation of
the rth piece of the bound with parameters α under a
Gaussian with mean µ and variance σ2. Closed-form
expressions for the truncated moments needed to com-
pute the special function fr(µ, σ

2,α) are given in an
online appendix to this paper1.

Eqn(ηdn|γ̃dn)[Bα(η)] =

R∑
r=1

fr(m̃dn, ṽdn,α)

=

R∑
r=1

∫ tr

tr−1

(arη
2 + brη + cr)N (η|m̃dn, ṽdn)dη

1http://www.cs.ubc.ca/~bmarlin/research/papers/
trunctedGaussianMoments.pdf
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Note that if a piecewise linear bound is used instead of
a piecewise quadratic bound, the coefficients ar will all
be zero and the bound on the marginal likelihood will
only contain moments of order zero and one. Alter-
natively, if a single-piece quadratic variational bound
is used, the formulas still apply with a single piece
defined on [−∞,∞].

4.2. A Generalized EM Algorithm

Learning the parameters of a binary LGM model re-
quires optimizing the bound on the marginal likeli-
hood given by LQJ(θ,γ) with respect to the model
parameters θ and the variational posterior parameters
γ. Some of the parameter updates are not available
in closed form and require numerical optimization, re-
sulting in a generalized expectation maximization al-
gorithm. The generalized E-Step requires numerically
optimizing the variational posterior means and covari-
ances. The generalized M-Step consists of a mix of
closed-form updates and numerical optimization. We
give the gradients or closed form updates as appropri-
ate in Algorithm 1.

The gradients are given in terms of the gradients of
the special function fr(µ, σ

2,α), which are given in
the online appendix to this paper. We use limited
memory BFGS to perform the updates that require
numerical optimization. The piecewise bound Bα(x)
is computed in advance and fixed during learning and
inference. For variational bounds, the free parameters
in the LLP bound must be optimized for each data
case and each iteration of the EM algorithm. For the
sbLGGM model, we compute the maximum likelihood
estimate of Σ and pass it to a standard convex opti-
mization procedure for the Gaussian graphical Lasso
on each iteration. This procedure returns the MAP
estimate of Σ under the graphical lasso prior.

5. Maximum Error Analysis

The fact that the piecewise linear and quadratic
bounds on the LLP function both have a known fi-
nite maximum error εmax means that we can easily
bound the maximum error in the marginal likelihood
or variational free energy due to the application of the
LLP bound. Suppose we have a piecewise quadratic
bound Bα(x) (with a piecewise linear bound being a
special case). We can write Bα(x) as ε(x) + llp(x) for
any x, where ε(x) ≥ 0 is the point-wise error function
of the bound Bα(x). We let εmax denote the maximum
value of ε(x) over all x.

Theorem 5.1. The loss in log marginal likelihood in-
curred by using the piecewise quadratic bound on the
LLP function in addition to Jensen’s inequality is at

Algorithm 1 bLGM Generalized EM Algorithm

E-Step:

∂LQJ
∂mkn

←
D∑
d=1

ydnWdk −
K∑
l=1

(Σ−1)lk(mln − µl)

−
R∑
r=1

D∑
d=1

Wdk
∂fr(m̃dn, ṽdn,α)

∂m̃dn

∂LQJ
∂Vkl

← 1

2
(Σ−1)kl −

1

2
(V−1n )kl

−
R∑
r=1

D∑
d=1

WdkWdl
∂fr(m̃dn, ṽdn,α)

∂ṽdn

M-Step:

µ← 1

N

N∑
n=1

mn

Σ← 1

N

N∑
n=1

(
Vn + (mn − µ)(mn − µ)T

)
∂LQJ
∂Wdk

←
N∑
n=1

[
mkn

(
ydn −

R∑
r=1

∂fr(m̃dn, ṽdn,α)

∂m̃dn

)

−

(
2

K∑
l=1

VklnWdk

)
R∑
r=1

∂fr(m̃dn, ṽdn,α)

∂ṽdn

]

most Dεmax. In other words, LJ(θ,γ)− LQJ(θ,γ) ≤
Dεmax for any θ,γ. Furthermore, this bound is tight
in the sense that a loss arbitrarily close to Dεmax can
be realized.

Proof: Since the maximum error in each piece of the
bound is less than or equal to εmax, we have that
Bα(x) ≤ εmax + llp(x) for all x. We can bound the
loss in the log marginal likelihood for each data case
n as follows:

Eqn(z|γn)[log p(yn|z,θ)]

≥
D∑
d=1

Eqn(zd|γ) [ydnWddzd − (εmax + llp(Wddzd))]

= −Dεmax + Eqn(z|γ)[log p(yn|z,θ)]

Since this holds for all n, we have that LJ(θ,γ) ≥
LQJ(θ,γ) ≥ LJ(θ,γ) − Dεmax. A simple rearrange-
ment of these terms yields the desired result that
LJ(θ,γ) − LQJ(θ,γ) ≤ Dεmax. To show that the
Dεmax bound can be arbitrarily tight, we need only
consider a bLGM where the mean on each dimension
is located a point that achieves the maximum error



Piecewise Bounds for Binary Latent Gaussian Models

0 1 2 3 4
−0.6

−0.58

−0.56

−0.54

σ

Bohning vs True

0 1 2 3 4
−0.6

−0.58

−0.56

−0.54

σ

Jaakkola vs True

0 1 2 3 4
−0.6

−0.58

−0.56

−0.54

σ

L6 & L10 vs True

0 1 2 3 4
−0.6

−0.58

−0.56

−0.54

σ

Q3 & Q5 vs True

(a) 1D bLGGM Likelihoods (b) 5D bLGGM Covariance

B J L3 L4 L5 L10 Q3 Q4 Q5 Q10
10

−3

10
−2

10
−1

Bound

B
it
s

KL Divergence vs Bounds

(c) 5D bLGGM KL Divergence

Figure 2. Figure (a) shows results for the 1D synthetic bLGGM experiment. We show the Bohning, Jaakkola, 6 and 10
piece linear and 3 and 5 piece quadratic bounds on the marginal likelihood. The bounds are shown in red with darker
colors indicating more pieces. The true marginal likelihood is shown in blue. Markers show the true and estimated
parameter values. Figure (b) shows the true covariance matrix for the synthetic 5D bLGGM experiment along with the
covariance matrices estimated using the Bohning, Jaakkola, and 10 piece quadratic bounds (best viewed in color). Figure
(c) shows the KL divergence between the true and estimated distributions for the 5D synthetic bLGGM experiment. We
show results for the Bohning and Jaakkola bounds, as well as 3, 4, 5 and 10 piece linear and quadratic bounds.

εmax. As the covariance Σ shrinks to 0, mn will con-
verge to µ and Vn will converge to Σ for all n. The
result will be an error of exactly Dεmax �.

A simple corollary of the above result is that the max-
imum difference between LJ(θ,γ) and LQJ(θ,γ) at
their respective optimal parameter values can not ex-
ceedDεmax. We also note that the rate at which the er-
ror in the LLP bound decreases with number of pieces
R is proportional to the rate at which LQJ(θ,γ) ap-
proaches LJ(θ,γ). Hsiung et al. (2008) showed that
the error in the optimal piecewise linear bound de-
creases with the approximate rate

√
2/R2. The error

in the piecewise quadratic bounds decreases at least
this fast. This means that LJ(θ,γ) − LQJ(θ,γ) ap-
proaches zero at a rate that is at least quadratic in
the number of pieces. Finally, we note that analo-
gous maximum error results hold if we directly bound
the marginal likelihood L(θ) by introducing the piece-
wise quadratic bound, obtaining LQ(θ) without first
applying Jensen’s inequality.

6. Experiments and Results

In this section we compare the piecewise linear
and quadratic bounds to Jaakkola and Bohning’s
bounds for bLGM models on several binary data sets.
Throughout this section, we use p(y|θ) to refer to the
exact probability of a data vector y under the dis-
tribution with parameters θ. The exact probabilities
p(y|θ) remains intractable, but for small D we can
compute them to arbitrary accuracy using numerical
integration. We use p̃(y|θ,α) to refer to the bound on

the probability of the data vector computed using the
model parameters θ and bound parameters α.

In higher dimensions we use imputation error as a mea-
sure of model fit. We hold out exactly one dimension
per data case, selected at random. Given the observed
data, we use each of the bounds to find the approxi-
mate posterior distribution q(zn|γn), and compute the
prediction as p̂(y) = Eq(zn|γn)p(y|z). To standardize
the computation of the final integral, we use the ap-
proximation described in (Bishop, 2006) (see Chapter
4, page 218). We use the average cross-entropy of the
held-out values as the imputation error measure.

bLGGM 1D-Synthetic: We begin by considering
a one-dimensional binary latent Gaussian graphical
model parameterized by a scalar mean µ and variance
σ2. The parameter vector is thus θ = [µ, σ2]. We set
the true parameters θ∗ to µ∗ = 2 and σ∗ = 2, yield-
ing p(y = 1|θ∗) = 0.7752. We assess the bound on the
marginal likelihood in the limit of infinite data by com-
puting LQ(θ) =

∑
y p(y|θ

∗) log(p̃(y|θ,α)) as we vary
σ from 0 to 4 with µ fixed to µ∗. Note that for the
variational bounds, we must optimize the free param-
eters in the LLP bound to maximize LQ(θ) for each
value of σ.

The results of this experiment are given in Figure 2(a).
We plot both the exact marginal likelihood and the
bound on the marginal likelihood. We see that the
Bohning (B) and Jaakkola (J) bounds fail dramati-
cally, estimating σ = 0 instead of the correct value
σ = 2. The piecewise bounds do significantly better,
converging to the true marginal likelihood and cor-
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Figure 3. The first three plots show the imputation error of the 20-piece quadratic bound relative to Bohning and Jakkola
for the bFA model on the Voting data set, bLGGM on LED and sbLGGM on the LED data set (the piecewise bound has
lower error when the marker is below the diagonal line). The final plot shows an example of the imputation error versus
the regularization parameter setting λ for the sbLGGM experiment.

rect σ value as the number of pieces in the bound in-
creases. The piecewise quadratic bounds (Q3 and Q5)
converge significantly faster than the linear bounds (L6
and L10), as predicted by the maximum error analy-
sis in Section 5. Note that the results for Q3 and
Q5 match those of L6 and L10, suggesting that the
quadratic bound converges twice as fast as a function
of the number of pieces.

bLGGM 5D-Synthetic: Next we consider a 5D bi-
nary latent Gaussian graphical model. We set the true
mean vector µ∗ to 0 and the true covariance matrix Σ∗

as seen in the top left panel of Figure 2(b). We sample
106 data cases from the true model to compute an es-
timate of the true data distribution. We estimate the
model using a data set consisting of all 25 data cases y
weighted by p(y|θ∗) to again focus on the asymptotic
regime. Unlike the previous experiment, in this exper-
iment we estimate the models by optimizing LQJ(θ,γ)
using Algorithm 1.

Figure 2(b) shows the covariance matrices estimated
using the Jaakkola (J), Bohning (B) and 10 piece
quadratic bounds (Q10). We see that both Bohning
and Jaakkola shrink the estimated covariance param-
eters considerably, while the 10 piece quadratic bound
results in less biased parameter estimates. Figure 2(c)

shows the KL divergence between p(y|θ∗) and p(y|θ̂)

for the parameters θ̂ estimated using each bound. This
KL divergence is again computed using 106 samples
from each distribution. We show results for Bohning
(B), Jaakkola (J) and 3 to 10 piece linear and quadratic
bounds (L3-L10,Q3-Q10). We see that the piecewise
bounds have significantly lower KL divergence than
the Bohning and Jaakkola bounds when using a suffi-
cient number of pieces. This indicates that they esti-
mate significantly more accurate models, as suggested
by the covariance plots in Figure 2(b). We again see
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Figure 4. Imputation error versus time on the UCI Voting
data. Markers are plotted at iterations 2, 10, 20, 35.

that the piecewise quadratic bound converges approx-
imately twice as fast as the piecewise linear bound as
a function of the number of pieces.

bFA Voting: We fit a three-factor bFA model to the
congressional voting records data set (available in the
UCI repository) which contains votes of 435 U.S. Con-
gressmen on 16 issues. We remove the data points
which contain missing values and 3 issues which only
show mild correlation with other issues. This gives
us a total of 258 data vectors with 14 variables each.
We use 80% of the data for training and 20% for test-
ing. Figure 4 shows traces of the imputation error
versus time for Jaakkola (J), Bohning (B), three-piece
linear (L3) and three and ten piece quadratic bounds
(Q3, Q10) for one training-test split. We see that the
piecewise bounds give lower error than the Jaakkola
and Bohning bounds, but require more time to con-
verge. We again observe that the quadratic bounds
have lower error than the linear bounds and the error
decreases as the number of pieces increases. The first
plot in Figure 3 shows the final imputation error re-
sults for 10 training-test splits. We plot the error of
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Q20 against that of B and J. We clearly see that Q20
outperforms both B and J on all splits.

bLGGM and sbLGGM LED: We fit the bLGGM
and sbLGGM models to the UCI LED data set (avail-
able in the UCI repository). This data set has 2000
data cases and 24 variables. The data is synthetically
generated but is out of the model class. It contains
7 highly correlated variables and 17 variables that are
marginally independent. In the bLGGM experiment
we use 80% of the data for training and 20% for test-
ing. The second plot in Figure 3 shows the results for
10 training-test splits for the bLGGM experiment. As
in the Voting data, we see that Q20 outperforms both
B and J on all splits.

In the sbLGGM experiment we purposely under-
sample the training set using 10% of the data for train-
ing and 50% for testing. The third plot in Figure
3 shows the results for 10 training-test splits for the
sbLGGM experiment. We plot the error of Q20 versus
B and J for the optimal choice of the regularization
parameter λ found using cross-validation. We again
see that Q20 outperforms both B and J on all splits.
The final plot in Figure 3 shows traces of the imputa-
tion error as a function of the regularization parameter
setting for a single split. The optimal value of λ for
each bound corresponds to precision matrices that are
82.6%, 83.7% and 80.4% sparse for B, J and Q20, re-
spectively.

7. Discussion

Piecewise quadratic bounds provide a tractable and
useful family of estimators with a novel, tunable speed-
accuracy trade-off controlled by the number of pieces.
The main drawbacks of our approach is its reliance
on the assumption of a Gaussian variational poste-
rior. If the Gaussian assumption is strongly violated,
the method will likely perform poorly, but in this case
no other method based on the same underlying varia-
tional posterior can perform well.

An alternative to our approach is expectation-
propagation (EP) in probit link-based LGMs (Minka,
2001). For parameter estimation, one can alternate EP
inference with optimization of the EP approximation
to the marginal likelihood (Minka, 2001, Equation 11).
Some authors instead advocate the use of a Jensen’s
inequality-based approximation to the marginal likeli-
hood (Kuss & Rasmussen, 2005), which is identical to
the one we apply. In any case, neither of these EP-
based learning schemes are provably convergent, while
the variational framework is.
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